806 research outputs found

    Wake excited in plasma by an ultrarelativistic pointlike bunch

    Get PDF
    We study propagation of a relativistic electron bunch through a cold plasma assuming that the transverse and longitudinal dimensions of the bunch are much smaller than the plasma collisionless skin depth. Treating the bunch as a point charge and assuming that its charge is small, we derive a simplified system of equations for the plasma electrons and show that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. The equations demonstrate an ion cavity formed behind the driver. They are solved numerically and the scaling of the cavity parameters with the driver charge is obtained. A numerical solution for the case of a positively charged driver is also found.Department of Energy DE-AC03-76SF00515U.S. Department of Energy DEFG02-04ER54742 DE-SC0007889 DE-SC0010622Air Force Office of Scientific Research (AFOSR) FA9550-14-1-0045Physic

    Modeling of long range frequency sweeping for energetic particle modes

    Get PDF
    Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries

    Resonant Excitation of Shear Alfv\'en Perturbations by Trapped Energetic Ions in a Tokamak

    Full text link
    A new analytic expression is derived for the resonant drive of high n Alfvenic modes by particles accelerated to high energy by Ion Cyclotron Resonance Heating. This derivation includes finite orbit effects, and the formalism is completely non-perturbative. The high-n limit is used to calculate the complex particle response integrals along the orbits explicitly. This new theory is applied to downward sweeping Alfven Cascade quasimodes completing the theory of these modes, and making testable predictions. These predictions are found to be consistent with experiments carried out on the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)].Comment: 31 pages, 6 figure

    Deep connection between f(R) gravity and the interacting dark sector model

    Full text link
    We examine the conformal equivalence between the f(R)f(R) gravity and the interacting dark sector model. We review the well-known result that the conformal transformation physically corresponds to the mass dilation which marks the strength of interaction between dark sectors. Instead of modeling f(R) gravity in the Jordan frame, we construct the f(R)f(R) gravity in terms of mass dilation function in the Einstein frame. We find that the condition to keep f(R)f(R) gravity consistent with CMB observations ensures the energy flow from dark energy to dark matter in the corresponding interacting model, which meets the requirement to alleviate the coincidence problem in the Einstein framework.Comment: 9 pages, 2 figures, revised version, accepted for publication in Phys. Rev.

    Alfvén Eigenmodes in shear reversed plasmas

    Get PDF
    Experiments on JT-60U and JET have shown that plasma configurations with shear reversal are prone to the excitation of unusual Alfvén eigenmodes by energetic particles. These modes emerge outside the TAE frequency gap, where one might expect them to be strongly damped. The modes often appear in bunches and they exhibit a quasi-periodic pattern of predominantly upward frequency sweeping (Alfvén Cascades) as the safety factor q changes in time. This work presents a theory that explains the key features of the observed unusual modes including their connection to TAE’s as well as the modifications of TAE’s themselves near the shear reversal point. The developed theory has been incorporated into a reduced numerical model and verified with full geometry codes. JET experimental data on Alfvén spectroscopy have been simulated to infer the mode numbers and the evolution of qmin in the discharge. This analysis confirms the values of q that characterize the internal transport barrier triggering in reversed shear plasmas

    On analytical solutions of f(R) modified gravity theories in FLRW cosmologies

    Get PDF
    A novel analytical method for f(R) modified theories without matter in Friedmann-Lemaitre-Robertson-Walker spacetimes is introduced. The equation of motion for the scale factor in terms of cosmic time is reduced to the equation for the evolution of the Ricci scalar R with the Hubble parameter H. The solution of equation of motion for actions of the form of power law in Ricci scalar R, is presented with a detailed elaboration of the action quadratic in R. The reverse use of the introduced method is exemplified in finding functional forms f(R) which lead to specified scale factor functions. The analytical solutions are corroborated by numerical calculations with excellent agreement. Possible further applications to the phases of inflationary expansion and late-time acceleration as well as f(R) theories with radiation are outlined.Comment: 16 pages, 6 figures. v2: minor changes, references added. v3: minor changes, more references added. v4: version to appear in IJMPD. v5: DOI and journal reference adde
    corecore